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1 Introduction

Since the discovery of the AdS/CFT correspondence [1], there have been great expectations

that this duality will help us answer deep questions about black hole physics. The reason

is that the gauge theory provides a non-perturbative description of quantum gravity in

the bulk with fixed boundary conditions. In particular, one expects to find a resolution to

the black hole singularity, and a solution to the information loss problem. For the former,

most research has been focused on finding signatures of the eternal black hole singularity

in the gauge theory correlation functions [2]. This has been done exploiting the duality

between the gauge theory at finite temperature, and an eternal AdS-Schwarzchild black

hole in the bulk.

However, one would like to understand the dynamical phenomena of black hole forma-

tion, and its eventual evaporation. For this reason, it is very desirable to understand how

to set up initial states in the gauge theory which are dual black hole forming processes in

the bulk. One way to do this is to study states in N = 4 SYM theory which are dual to

high energy graviton scattering in the bulk.

Classically, and in flat space, it is known that for energies much greater than the

Planck’s energy, these scattering processes lead to the formation of a trapped surface [3].

This has been shown by superposing two Aichelburg- Sexl shock waves, which represent the

gravitational field of massless particles in flat space [4]. However, quantum mechanically

one needs to be more careful and take into account the wave nature of the particle. This

was discussed in [5].

Scattering processes have also been studied in the context of the AdS/CFT duality in,

for example [6]. However, most of these works have dealt with the problem of particles

coming from the boundary into the AdS bulk. This has various problems. The first is that
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the high redshift between the bulk and the boundary makes it hard to focus wavepackets

on small scales. Secondly, since these calculation only involve correlation functions on the

boundary, one is necessarily calculating S-matrix elements. It is desirable to have a precise

state in SYM on R × S3, which we could evolve in time (at least in principle). Finally,

focusing the scattering process into the center of AdS should lead to simplifications since

the whole process is basically taking place in flat space.

Therefore, in this paper we answer the following simple question: what is the SYM

state dual to a Aichelburg- Sexl shock wave for a graviton well localized at the center of

AdS, and traveling along the S5?

Moreover, we show how to superpose two such waves so we get a two-graviton scattering

process in the bulk. We mainly work at zero impact parameter, but other generalizations

are straightforward. We also make sure that the resulting trapped surface is much larger

than the string scale, but much smaller that the AdS radius. Furthermore, we ensure that

the curvature at the trapped surface is small. Finally, we comment on how one should

understand this scattering process at strong coupling and at non-zero impact parameter,

in terms of a quantum model of commuting matrices as in [7].

The organization of the paper goes as follows. In section II, we take a 1/2 BPS

linearized perturbation of AdS5 ×S5 described by the so-called LLM solution of [8]. These

solutions can be classified by “droplets” on a two dimensional plane. A droplet with the

shape of a unit disk represents the AdS5 ×S5 solution. We then make a small ripple along

the boundary of the unit disk. This represents a massless graviton wavefunction. We then

take the limit of large radius of AdS while focusing on the region near the wavepacket. This

leaves a ten dimensional flat space metric with a linear perturbation of the Aichelburg-Sexl

type. The difference here is that we can now control the spread of the wavepacket, and the

usual delta function in the metric gets replaced with a smeared finite function. This allow

us to control the curvature near the trapped which was an issue discussed in [5].

In section III, we write down states dual to these LLM shock waves using the dictionary

recently developed in [9]. The states are constructed out of the zero mode of one of the

adjoint scalars of SYM theory. We give particular examples of initial states corresponding

to two gravitons separated by a finite distance in flat space, and heading towards each

other with zero impact parameter. We also comment on the generalization for non-zero

impact parameter.

Even though the two graviton state is not BPS, it should be well approximated by a

product of two BPS states (with opposite R-charge) as long as the two particles are well

separated in the bulk. This is analogous to the use of free field theory to define asymptotic

states in interacting quantum field theories.

In section IV we speculate on how one should study these initial states and their time

evolution, at strong coupling. In particular, we argue that the reduced matrix model of [7]

should be sufficient to understand graviton scattering at impact parameters b > El2s , where

E is the center of mass energy of the collision.

In section V we close with some final comments and future directions.

Conventions. In this article we will set the ten dimensional Planck’s constant lp = 1.

In these units, the AdS radius is related to the rank of the SYM gauge group N by
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R = (4πN)1/4. The string length is given by ls =
√
α′ = g−1/4, where g is the closed

string coupling also related to the SYM coupling by 4πg = g2
YM. We will also introduce

the parameter ~ = 1/N .

2 The Aichelburg-Sexl metric from IIB supergravity

In this section we will show how the Aichelburg-Sexl metric [4] can be derived from the

1/2 BPS geometries of type IIB supergravity [8]. This metric describes the external grav-

itational field of a point-like massless particle. In fact, our version of the Aichelburg-Sexl

metric will take into account the wave nature of the particle. This will allow us to control

the curvature of the geometry near the region of the trapped surface.

All 1/2 BPS solutions to type IIB supergravity with N units of Ramond-Ramond five-

form flux have been found in [8]. They preserve a bosonic R × SO(4) × SO(4) symmetry

of the ten dimensional space-time. Moreover, they preserve half of the supersymmetries of

the original AdS5 × S5. We will leave the details of this analysis to reference [8]. Here we

will only need the general form of the metric.

It turns out that all solutions are classified by a single function, which we call ρ, on a

two dimensional plane. The metrics can be written as,

ds2 = −h−2(Dt)2 + h2(dy2 + dzdz̄) + ye−GdΩ2
3 + yeGdΩ̃2

3,

h−2 = 2y coshG,

f =
1

2
tanhG,

f(z, z̄, y) = −y
2

2

∫
d2z′

ρ(z′, z̄′)
(|z − z′|2 + y2)2

. (2.1)

Here, we have defined the covariant derivative, Dt = dt + V = dt + 1
2 iV̄ dz − 1

2 iV dz̄,

and we are using complex coordinates in the y = 0 plane: z = x1 + ix2, z̄ = x1 − ix2.

Moreover,

V (z, z̄, y) =
1

2

∫
d2z′

ρ(z′, z̄′)(z − z′)
(|z − z′|2 + y2)2

. (2.2)

All non-singular solutions must have ρ = ±1/π. Therefore we can separate the integra-

tions above in domains or “droplets” (Di) for which ρ = 1/π (say) inside and ρ = −1/π out-

side. In this paper we will only consider a single droplet at the center of the complex plane.

The curvature radius of the azymptotic AdS5 × S5 (R) is set by R4 =
∫
D d

2z/π.

Therefore, we can rescale all spatial coordinates by xi → R2xi and we get an overall factor

of R2 in front of the metric. Then, our area quantization condition is simply,

∫

D

d2z

π
= 1 . (2.3)

This makes it easier to compare with the gauge theory. Finally, the energy of the solution

can be written as,

E = J =
1

~2π

∫

D
d2z|z|2 − 1

2~2
. (2.4)
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Before turning our attention to the Aichelburg-Sexl metric, lets recover the familiar

AdS5 × S5 and flat space. For the former, we need to consider a circular droplet of unit

radius. The integrations above give,

V =
1 + y2 + |z|2 −

√
(1 + y2 + |z|2)2 − 4|z|2

2z̄
√

(1 + y2 + |z|2)2 − 4|z|2
. (2.5)

Similarly,

f =
y2 + |z|2 − 1

2
√

(1 + y2 + |z|2)2 − 4|z|2
. (2.6)

Plugging these results back in the metric, and making the coordinate changes (z = reiφ),

y = sinh ρ sin θ ,

r = cosh ρ cos θ , (2.7)

φ̃ = φ− t ,

we obtain the standard form for the AdS5 × S5 metric:

ds2 = R2
[
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̃2

3 + dθ2 + cos2 θdφ̃2 + sin2 θdΩ2
3

]
. (2.8)

Let us now obtain flat space. For this, we need to zoom in into the edge of the droplet.

We will do it by rescaling

z →
(
1 +

x2

R2

)
exp

(π
2
− x1

R

)
, y → 1

R2
y , t→ 1

R
t , (2.9)

while taking the limit R → ∞. We can then make the following coordinate change:

y = r1r2, x2 = (r21 − r22)/2. A careful expansion of the metric above gives,

ds2 = −dx1(2dt − dx1) + d~r2 , (2.10)

where ~r = ~r1 + ~r2 is an eight dimensional transverse vector to the droplet. Note the

difference between this limit and the usual pp-wave limit. In the later, one does not rescale

the time coordinate and, instead, make a further rescaling x1 → x1/R.

From the metric (2.10) we clearly see the two null geodesics at the center of AdS:

x1 = const., and x1 = 2t + const. Ripples on the boundary of the droplet following any

of these geodesics will be 1/2 BPS, but with opposite angular momentum on the S5. Let

us now focus on a ripple centered at x1 = 0. We can later boost this result to obtain a

particle along the other geodesic.

The ripple will be given by a fluctuation on the radius of the droplet:

rboundary = 1 + δr(φ) . (2.11)

The area quantization condition (2.3) implies,

2

∫
dφδr(φ) +

∫
dφ [δr(φ)]2 = 0 . (2.12)
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To leading order in the perturbation, one can set the second term above to zero in most cal-

culations. However, for the energy (2.4) one needs to be careful. Using (2.12) in (2.4) we get,

E ≈ 1

π~2

∫
dφ [δr(φ)]2 . (2.13)

Now we would like to localize the perturbation δr within the flat space patch near

φ = π/2 (or x1 = 0). Moreover, one would like to keep the energy E fixed as we take the

R→ ∞ limit. To this end, we will normalize the solution as

δr(φ) =
4π3/2

√
E

R3
√
λ

g [R(φ− π/2)/λ]

=
4π3/2

√
E

R3
√
λ

g(x1/λ) . (2.14)

Here the function g(x) is zero outside the interval x ∈ [−1/2, 1/2], and λ is some wavelength

that does not scale with R. Moreover, the function g(x) is normalized such that,
∫ 1/2

−1/2
dx[g(x)]2 = 1 . (2.15)

Using the area constraint (2.12), we also get
∫ 1/2

−1/2
dxg(x) = −2π3/2

√
E

R3
√
λ

→ 0 , (2.16)

where in the last step we have taken the large R limit.

It is easy to verify from (2.13) that this perturbation indeed has energy E, once we take

into account the fact that we have rescaled the time as in (2.9), and hence the Hamiltonian

as Ĥnew = Ĥold/R.

Let us now derive the metric corresponding to this perturbation, starting with the

function f of the metric (2.1). We can write f = f0 + 1
R2 δf , where f0 is the AdS space

result eq. (2.6). Similarly, V = V0 + δV , where V0 is also the AdS space result (2.5). The

reason for the scalings with R will become apparent in a moment. For now, we just expand

the metric to linear order in the perturbations and take the R→ ∞ limit with the change

of coordinates (2.9). The result is,

ds2 = −dx1(2dt − dx1) + d~r2 + δg11dx
2
1 , (2.17)

where

δg11 = i(δV − δV̄ ) − 2x2

y2
δf . (2.18)

Let us now study the form of these perturbations more closely. One can easily show

that, after doing the rescalings (2.9), the metric perturbation becomes:

δg11 = ≈ 2R3

π

∫ λ/2

−λ/2
dx′1

∫ R2δr(x′
1
)

0
dx′2

×
[
x′2 +

1

2
(x2

1 − x′21 )

]

×
(
y2 +R2(x1 − x′1)

2 + (x2 − x′2 −
1

2
(x2

1 − x′21 ))2 + O(1/R)

)−2

. (2.19)
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We can simplify this expression in two ways. First let us note the identity

lim
R→∞

R

(1 + [RG(x)]2)2
= − ∂

∂ǫ
lim
R→∞

R

ǫ+ [RG(x)]2

∣∣∣∣
ǫ=1

= − ∂

∂ǫ

1√
ǫ
πδ(G(x))

∣∣∣∣
ǫ=1

=
π

2
δ (G(x)) . (2.20)

Moreover, from (2.14) we can see that R2δr ∼ 1/R and so it is very small for x2 ∼
O(1). Therefore, using (2.14) and making the usual change of coordinates y = r1r2,

x2 = (r21 − r22)/2, we get

δg11 ≈ (4π)3E

|~r|6 δλ(x1) , (2.21)

where we have defined,

δλ(x) =

∫ 1/2

−1/2
dx′[g(x′)]2δ(x− λx′) . (2.22)

This is basically a delta function with support in an interval ∆x = λ.

To summarize, we have found that for a perturbation of the unit disk of the form (2.14),

the LLM metric in the large R limit becomes,

ds2 = −dx1(2dt − dx1) + d~r2 +
(4π)3E

|~r|6 δλ(x1)dx
2
1 . (2.23)

This is precisely the form of the Aichelburg-Sexl metric in ten dimensions [3]. Note that the

perturbation obeys the ten dimensional Laplace equation with a delta function source at

~r = 0. This delta function is only an artifact of the limit R→ ∞. The full ten dimensional

solution is completely smooth even at ~r = 0.

We can then see that for a 1/2 BPS perturbation with the opposite angular momentum

one can simply shift this result by x1 → 2t− x1. At the level of linearized gravity, we can

superimpose both waves and get a solution to Einstein’s equations. Of course, the solution

will not be BPS anymore. Moreover, the simple superposition is only valid outside the

region x1, 2t − x1 > 0, where the colliding shocks start to influence each other. The full

solution inside this region is still not known. Therefore, this simple superposition is only

valid for the initial states of the collision.

The two shock waves will collide at t = 0 and at x1 = 0. It is known that such head-on

collisions lead to the formation of an eight dimensional closed marginally trapped surface

with radius [3]

|~rh| ∼ E1/7 . (2.24)

We now need to ensure that this classical calculation is not spoiled by high curvatures

near the trapped surface. This issue was discussed in [5]. For a single shock wave, the only

non-zero components of the curvature tensor are

Rx1ix1j = −1

2
δλ(x1)

∂2

∂ri∂rj

(4π)3E

|~r|6 . (2.25)

– 6 –
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All curvature invariants are finite unless at the precise location of the particle ~r = 0.

For the two-wave superposition, one encounters a singularity at t = 0, x1 = 0 if we

take the limit λ→ 0. In fact, in this limit the only diverging curvature invariant is of the

form [5]

(Rµνρσ)
2 ∼ E2

|~r|16λ2
, (2.26)

where we have taken into account the peak in the function δλ(x). We can evaluate this

quantity at the radius of the trapped surface (2.24), and require: (Rµνρσ)
2 ≪ 1/l4s , |~rh| ≫ λ

and |~rh| ≫ ls. These conditions translate into

• g−1/2E−1/7 ≪ λ≪ E1/7,

• E1/7 ≫ g−1/4.

It is clear that for large energies these constraints are very easy to satisfy and they allow

us to take λ≪ 1.

At this point, we would like to emphasize that in order to obtain the flat space limit

with a fixed string length, we cannot take the usual ’t-Hooft limit. That is, we do not

take g2
YMN = fixed. Instead, we take N → ∞ keeping gs small but fixed. Indeed, this is

basically the same limit one takes when studying pp-waves [10].

3 Initial states from N = 4 SYM

In this section we will review the basic dictionary between the 1/2 BPS states of N = 4

SYM theory on R×S3, and matrix eigenvalue distributions. These eigenvalue distributions

can then be mapped to the LLM geometries studied in the previous section [8]. Using this

map it is easy to find the dual state to the Aichelburg-Sexl metric (2.23). Moreover, it is

straightforward to write a superposition of two shock waves.

The 1/2 BPS states of N = 4 SYM theory are created with the zero mode of one of

the complex adjoin scalar field Z(t,Ω), where Ω ∈ S3. The tree-level quadratic action for

this mode is simply

S =

∫
dt Tr

(
|Ż|2 − |Z|2

)
. (3.1)

This simple model has been discussed in [11].

We can now introduce the usual oscillators. We start with the following canonical

commutation relations,

[
(Z)ji , (Π)lk

]
= iδliδ

j
k ,

[
(Z̄)ji , (Π̄)lk

]
= iδliδ

j
k , (3.2)

where Π = ˙̄Z, and Π̄ = Ż. The harmonic oscillator operators are defined as usual,

A† =
1√
2

(
Z − iΠ̄

)
, Ā† =

1√
2

(
Z̄ − iΠ

)
, (3.3)

– 7 –
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with [
Aji , (A

†)lk
]

= δliδ
j
k ,

[
Āji , (Ā

†)lk
]

= δliδ
j
k , (3.4)

Note that Π† = Π̄.

The Hamiltonian of the system is simply,1

H = Tr
(
A†A+ Ā†Ā

)
. (3.5)

Note that these operators carry a single unit of the U(1) ⊂ SU(4) R-charge. The generator

for this U(1) is

J = Tr
(
A†A− Ā†Ā

)
. (3.6)

So we see that A† has charge +1 and Ā† has charge −1. This R-charge is dual to an angular

momentum along the S5 in the bulk. Since [H,J ] = 0, one can define a new Hamiltonian,

H ′ = H − J , (3.7)

which is naturally identified with the time t in the LLM coordinates used in the previ-

ous section.

The (anti) 1/2 BPS states are formed by acting with only (Ā†) A† on the ground state.

In the time slicing (3.7), the 1/2 BPS states are time independent and the anti-1/2 BPS

have a simple time dependence where Ā† → e2itĀ†.

Lets start by studying “coherent states” of the form,

|ψ1/2 BPS〉 ∝ e TrΩ(A†)|0〉 . (3.8)

We can also build non-BPS states that include two wavefunctions with opposite R-charge:

|ψ〉 ∝ e TrΩ1(Ā†)e TrΩ2(A†)|0〉 . (3.9)

In the dual string theory, these states will correspond to two gravitons at the center of

AdS5 and traveling in opposite directions along the equator of S5.

Although the state (3.9) is not BPS, as long as the gravitons are initially well separated

in the S5, one can treat each exponential as a separate initial 1/2 BPS state. This will

allow us to use the dictionary between the 1/2 BPS states (3.8) and the LLM geometries

developed in [9]. Let us now review this dictionary.

We can start by defining coherent states for the annihilation operator A. Namely,

Aji |Z〉 = Zji |Z〉 and where the resolution of the identity takes the form 1 =
∫

[d2Z]|Z〉〈Z|,
with [d2Z] the U(N) invariant measure over complex matrices.

The 1/2 BPS state (3.8) becomes,

〈Z|ψ〉 = e Tr Ω(Z)/~e− Tr|Z|2/(2~) ≡ ψ(Z)e− Tr|Z|2/(2~) , (3.10)

1We are ignoring the constant from normal ordering which gets canceled with the fermions in the full

supersymmetric theory.

– 8 –
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where we have rescaled the Z matrix for later convenience. By going to an eigenvalue basis,

one can show that the normalization of this state is given by the partition function [9],

〈ψ|ψ〉 ∝
N∏

i=1

∫
d2zie

P

j W (zj ,z̄j)/~+
P

i<j log |zi−zj |2 , (3.11)

where

W (z, z̄) = −|z|2 + Ω(z) + Ω(z) . (3.12)

It is well known that in the “classical” limit ~ → 0, one can use the saddle point

approximation and replace the sums in (3.11) by integrals over an eigenvalue density in

the complex plane [13]. This is the usual 2D Coulomb gas problem.

The “free energy” functional is,

F [ρ] = −1

~

∫
d2zρ(z)W (z, z̄) − 1

2

∫
d2z

∫
d2z′ρ(z)ρ(z′) log |z − z′|2 . (3.13)

The saddle point equations are δF [ρ] = 0 subject to the constraint
∫
d2zρ = ~

−1. Using the

fact that log |z|2 is the Green’s function in two dimensions, one finds that the density ρ is

locally constant with ρ = 1/(~π). The eigenvalues are then distributed over these constant

density droplets which can be translated to the LLM geometries. Compelling evidence for

this was specially given in [9, 12], where it was shown that one can recover a probe string

sigma model on a LLM geometry in the gauge theory by including a single trace “probe”

state in top of the 1/2 BPS state (3.8).

The energy of a 1/2 BPS state can be calculated by the free field theory Hamilto-

nian (3.5). Using the coherent states, the Hamiltonian is simply H = Tr(Z∂Z), and it

acts on the wavefunction ψ(Z). Doing a partial integration in the Random Matrix Model,

it is easy to show that the energy of the state is given by,

E =
1

~
〈 Tr|Z|2〉 − 1

2~2
≈ 1

~2π

∫

D
d2z|z|2 − 1

2~2
. (3.14)

This expression matches precisely with the energy calculated in the gravity side, eq. (2.4).

We can now take a potential of the form

Ω(z) =
∑

k>0

tkz
k . (3.15)

It is known that for a single droplet the moments tk are related to the shape of the droplet

by [13]

tk =
1

k

∮

∂D

dz

2πi
z̄z−k . (3.16)

For a linearized perturbation in the boundary of the form (2.11), the moments reduce to,

tk ≈
1

πk

∫ 2π

0
dφδr(φ)e−ikφ . (3.17)

– 9 –
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Therefore, we can find the gauge theory dual to the Aichelburg-Sexl metric (2.23). We

simply use (2.14) in (3.17):

tk ≈
~

k

√
Eλ

π
e−ikπ/2

∫ 1/2

−1/2
dxg(x)eikxλ/R . (3.18)

The single particle state can now be written as,

|ψ〉 = exp

[
−
√
Eλ

π
×
∫ 1/2

−1/2
dxg(x) Tr log

(
ie−ixλ/R −

√
~A†

)]
|0〉 . (3.19)

It is now very easy to write down the anti-BPS state which is located at the null geodesic

x1 = L at t = 0. We simply shift x→ x+ L and replace A† → Ā† inside the log of (3.19).

The two particle initial state is simply the product of two such functions acting on the

ground state as in (3.9).

3.1 The problem with single trace states

In this section we would like to point out an obstruction in constructing the Aichelburg-Sexl

metric using only single trace states in SYM.

Consider the 1/2 BPS state

|ψ〉 =
∑

n>0

ψn~
n/2

√
n

Tr
(
A†
)n

|0〉 . (3.20)

In the large N limit, this state has unit norm so long as,
∑

n>0

|ψn|2 ≡ 1 . (3.21)

Of course, this is only valid as long as the amplitudes |ψn|2 decay sufficiently fast for

n > nmax., where nmax ≪ N . This constraint comes from the fact that, for sufficiently

large n, the single grace states with different ns are no longer orthogonal.
The “free energy” functional that comes from computing the square amplitude using

coherent states is

F [ρ] =
1

~

∫
d2zρ(z)|z|2 − 1

2

∫
d2z

∫
d2z′ρ(z)ρ(z′) log |z − z′|2 − log

∣∣∣∣∣

∫
d2zρ(z)

(
∑

n>0

ψn√
n
zn

)∣∣∣∣∣

2

.

(3.22)

The saddle point equation δF [ρ] = 0 with the constraint
∫
d2zρ = ~

−1 gives,

const. = −1

~

(
−|z|2 +

∑

k>0

tkz
k + h.c.

)
−
∫
d2z′ρ(z′) log |z − z′|2 , (3.23)

where the constant comes from the Lagrange multiplier implementing the area constraint,

and the moments tk are given by,

tk =
~ψk√

k
(∫

d2zρ(z)
∑

n>0
ψn√
n
zn
)

= − ~
2ψk√

k
(∑

n>0

√
nψnt−n

) . (3.24)
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In the last line, we have used the definition of the moments in terms of the eigenvalue

distribution, eq. (3.16). Moreover, at the linearized level, one can see from (3.17) that

t−n ≈ −t∗n.
One can then use (3.24) and the normalization (3.21) to solve for the wavefunction:

ψk = ~
−1

√
ktk , (3.25)

~
2 =

∑

n>0

k|tk|2 . (3.26)

The last equality comes from the normalization of the wavefunction, and gives an extra

constraint on the moments of the distribution. Note that we did not have this constraint

with the exponential states. This new constraint is part of the problem. To see this, lets

construct a particular example.

Consider a perturbation δr(φ) of the form (2.14) with

g(x) ∝





1 x ∈ [−1/2, 0)

−1 x ∈ [0, 1/2]

0 otherwise

. (3.27)

Using the linearized form of the moments (3.18) one can easily finds,

ψk = −4i~R

k3/2

√
E

πλ
e−ikπ/2 sin2

(
kλ

4R

)
. (3.28)

The normalization of the wavefunction gives a relation between E and λ:

E ≈ π

λ log 2
. (3.29)

To obtain this relation, one approximates the sum over k in (3.26) by an integral.

The relation (3.29) is not present for the exponential states studied above. Moreover,

we see that this is not compatible with the constraints studied in the previous section. In

particular, we want to take E ≫ 1 to have a macroscopic trapped surface. This means

that we need λ ≪ 1. In this case, however, the low curvature conditions would imply

λ6/7 ≫ g−1/2 which is not compatible with ls/lp ∼ g−1/4 ≫ 1. Therefore, we conclude that

single trace states are not good enough to produce macroscopic black holes.

There is another problem with single trace states: the ten dimensional wavefunction

on the bulk is not well localized in the orthogonal directions to the shock wave. We show

this in detail in the appendix, by relating the single trace excitations to single particle

states in the bulk. However, one would like to understand this problem directly from the

gauge theory. So far we haven’t found a clear answer to this question. What seems to

be happening is that the saddle point approximation is not good when we use the single

trace states. That is, due to the logarimic term in the “free energy” (3.22), the eigenvalue

distribution has a lot of variance around the saddle point. It would be interesting to show

this by a numerical simulation as in [14].

Nevertheless, we know that this does not happen for the exponential states (3.8).

Indeed, we know how to compute the corrections to the saddle point in this case. This is

discussed in [13]. The leading correction is a smoothing of the density distribution ρ(z)
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near the boundary of the droplet. That is, the density is not really a step function, but it

has an exponential decay at the edge of the droplet over a distance of order ∼
√

~ (in units

where the circular droplet has unit radius). This correction is even present for the ground

state circular droplet. If we translate this to the flat space coordinates (2.9), this means

that the variation of the density occurs on scales of x2 ∼ O(1).

Why don’t we see this effect in String Theory? The reason is that, the string scale is

very big ls = g−1/4 compared to lp ≡ 1, and so the string sees a step function to a very

good accuracy. Therefore, the supergravity solution captures only the average shape of the

droplet. This applies to general droplets. In other words, we only care about the shape

of the droplet and not its small scale structure along the edge. The shape of the droplet

will be accurately captured by the saddle point approximation as long as the variation of

the shape of the edge occurs on a scale ∆φ ≫
√

~. That is, we need a “long” wavelength

variation. In our case, we saw in the previous section that ∆φ ∼ 1/R ∼ ~
1/4 ≫

√
~.

Therefore, we are allowed to use the saddle point approximation for the exponential states.

4 The strong coupling description

In the previous section, we have seen how to construct initial states in SYM theory which

are dual to high energy graviton collisions on the S5. However, this has been done using

only the weak field theory description. For the case of states with the same R-charge, this

description is enough since they are supersymmetric. However, when it comes scattering

processes, one is dealing with non-BPS states and therefore one needs to work directly

at strong coupling. In this section we argue that graviton scattering at non-zero impact

parameter should be described by a reduced quantum mechanical model of commuting

matrices along the lines of [7].

Lets begin by reviewing the proposal of [7]. One starts by studying the dynamics of

the zero modes of the six hermitean scalars of SYM, Xa (a = 1, 2, . . . , 6). The classical

hamiltonian for these modes is given by [14],

Heff = Tr




6∑

a=1

1

2
(DtX

a)2 +
1

2
(Xa)2 +

6∑

a,b=1

g2
YM

8π2
[Xa,Xb][Xa,Xb]


 (4.1)

On general grounds, one expects the size of the SYM ground state to be,

1

N

6∑

a=1

〈0| Tr(XaXa)|0〉 ∼ N , (4.2)

in the large N limit. Therefore, if we re-scale the scalar by Xa →
√
NXa, we see that

the commutator term in (4.1) will have an extra g2
YMN factor in front of it. It then

makes sense that, in the large N limit (or in the large ’t-Hooft limit), the lowest energy

fluctuations around the ground state should be described by a quantum mechanical system

of commuting matrices.

For commuting matrices we can go to an eigenvalue basis. In this basis we can define

a vector containing the eigenvalues of all the matrices, ~xi = (X1
ii, . . . ,X

6
ii), where i =
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1, . . . , N . The quantum Hamiltonian that follows from (4.1) in this basis becomes [7],

H =
∑

i

(
− 1

2µ2
∇iµ

2∇i +
1

2
|~xi|2

)
, (4.3)

where

µ2 =
∏

i<j

|~xi − ~xj |2 , (4.4)

comes from the Jacobian produced from going to the eigenvalue basis.

The wavefunctions must be symmetric under the exchange of the eigenvalues by gauge

invariance. Moreover, the measure in this basis becomes,

〈ψ|ψ〉 =

∫ ∏

i

d6xiµ
2ψ∗ψ . (4.5)

We can get rid of the extra factor of µ2 in the inner product by rescaling the wavefunction

as ψ → ψ/µ. After this rescaling, the Hamiltonian becomes,

H =
∑

i

(
− 1

2µ
∇iµ

2∇i
1

µ
+

1

2
|~xi|2

)

=
∑

i

(
−1

2
∇2
i +

1

2
|~xi|2

)
+ Veff , (4.6)

where,

Veff =
∑

i

1

2

1

µ

(
∇2
iµ
)2

= −6
∑

i6=j

1

|~xi − ~xj|2
+
∑

i

∑

j,k 6=i

(~xi − ~xj) · (~xi − ~xk)

|~xi − ~xj |2|~xi − ~xk|2
. (4.7)

The ground state of this Hamiltonian is exactly known and takes the form [7]

ψ0 ∼ µ exp

(
−1

2

∑

i

|~xi|2
)
. (4.8)

In the large N limit, this wavefunction leads to an eigenvalue distribution which consist of

an S5 ⊂ R
6. The radius of the sphere was calculated in [15] and it is given by r0 =

√
N/2.

This confirms the expectation (4.2).

Now we want to add the dynamics of the off-diagonal elements of the matrices, for

both the zero modes, and the higher spherical harmonics on S3. For this we follow the

prescription of [7, 15–18], and quantize the off-diagonal modes in the background of the

diagonal eigenvalue distribution. More specifically, one can derive an effective quadratic

Hamiltonian for these modes that looks like

Hoff diag. ∼
∑

i6=j

∑

α

w
(α)
i,j (A†

α)ji (Aα)ij , (4.9)

– 13 –
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with

w
(α)
i,j =

√
m2
α +

g2
YM

2π2
|~xi − ~xj |2 . (4.10)

The operators Aα, A
†
α obey the usual commutator relations for harmonic oscillators. The

collective index α goes over the different kinds of excitations (scalars of fermions), and

their spherical harmonic numbers. Furthermore, mα is their tree level mass, which is a

positive (half) integer for (fermions) scalars. The coupling to the eigenvalues comes from

the commutator terms in the SYM lagrangian.

Of course, with no supersymmetry one expects that integrating out the off-diagonal

modes will produce a non-trivial functional determinant that will badly modify the Hamil-

tonian of the eigenvalues. The assumption of [7] is that, given all the supersymmetry

of SYM theory, the functional determinants between bosons and fermions should roughly

cancel to leading order. It would be interesting to prove this rigorously.

Now, the proposal of [15–17] is that we should treat the ~xi as random numbers given

by the distribution of the ground state (4.8). Given the size of he ground state r0 =
√
N/2,

one can see from (4.9) that the off-diagonal modes will generically have masses of the order

moff-diag. ∼
√
g2
YMN , and will decouple in the large ’t-Hooft limit, or large N limit.

It was first found in [15] that, using this approach, one could reproduce the energy

of the so-called BMN states to all loops in the ’t-Hooft coupling. Moreover, a picture

of semi-clasical “string bits” emerged which was later on confirmed in the classical string

theory by the so-called “Giant Magnons” of Maldacena and Hofman [19].

Now, let us suppose that we perturb the ground state by creating two waves of the form,

ψ ∼ e
P

i Ω1(~xi)+
P

j Ω2(~xj)ψ0 . (4.11)

Let us also suppose that each individual wave Ωa is “almost” BPS. By this we mean that,

if we had only one of them, the state would be very close to a BPS state. For example,

one can show [14] that holomorphic functions like Ω ∼∑k tkz
k are approximately BPS in

the sense that 〈H − J〉 ≈ 0 in the large N limit.

Finally, lets suppose that the two waves create two density fluctuations in the eigenval-

ues δρa(~x) that are both localized within a “flat space” patch. If we normalize the radius of

the S5 eigenvalue distribution to one, we have seen in section II that the flat space patch is

located within an angular difference of ∆φ ∼ 1/R ∼ N−1/4. The two density fluctuations

will be located within this patch. That is, their angular separation is ∼ b/N1/4, where b is

a fixed number.

We can now ask: are there any light off-diagonal modes that can be excited? One can

divide the off-diagonal excitations into two categories. First, there are the “string bits” that

connect different eigenvalues within the same density fluctuation δρa. These should be sup-

pressed since we assumed that each individual wave is almost BPS. However, we also have

the string bits that join eigenvalues between the two different lumps. From the dispersion

relation (4.10), it is easy to see that these off-diagonal modes will have energies of the order

Eoff-diag ∼
√

m2
α +

g2
YMN

2π2

(
b

N1/4

)2

>
√
gbR . (4.12)
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However, we need to remember, that we are looking at small time scales and that we re-

defined our time coordinate by t→ t/R, and so the Hamiltonian by H → HR. Therefore,

the energy of the off-diagonal modes in the new time coordinate is Eoff-diag >
√
gb = l−2

s b.

To be able to ignore these modes, one would need to have large impact parameters so that

E < Eoff-diag, where E is the center of mass energy of the collision. This leads to the bound,

b > l2sE . (4.13)

In the string theory picture, this is precisely the bound to create long strings [20]. It

is interesting to reproduce this bound from a gauge theory perspective.

However, to create black holes one needs b ∼ |~rh| ∼ E1/7, which is much smaller

than (4.13). This seems to suggest that the matrix model can only capture graviton

scattering in the Born approximation. Nevetheless, there is evidence that stringy physics

does not play a role in the formation of the black hole [20, 21]. It might be that the matrix

model is good even for impact parameters lower than (4.13). In any case, it would be

interesting to even recover the 1/r2 gravitational potential from the matrix model.

Now let us explain in a bit more detail, how one should attack these problems. First, of

all we need to learn how to write down well localized initial states using the SO(6) matrix

model. The guess would be that one can take the same Ω that we used for the single matrix

model in section III. This needs to be checked in more detail. In particular, one would

like to see if the resulting density fluctuation (for a single graviton) is indeed localized as

desired. This might involve the need of numerical simulations as in [14].

To control the impact parameter using our formalism, one can start with an holomor-

phic wave of the form Ω ∼ ∑
k tkz

k (and the corresponding anti-holomorphic one), and

perform a rotation of the coordinate z. This will take one of the geodesics off the equator.

Then, by controlling the initial angle from which we start our lumps, one can arrange

an initial state with two lumps that, after time evolving, will miss each other by a finite

impact parameter.

Finally, one needs to solve the time evolution of the density lumps δρa using the

Hamiltonian (4.6). Note that this is a non-trivial N -body problem. However, one expects

some simplifications in taking the large N limit.

5 Conclusion

In this paper we have made a first attempt to carefully define initial states in SYM theory

that, under time evolution, are dual to high energy graviton scattering in the bulk. The

basic approach has been to concentrate on the zero modes of the SYM scalars, which are

dual to excitations that are located at the center of AdS5, but carrying angular momentum

along the S5. We have given a dictionary between gauge theory states and linearized LLM

geometries. Furthermore, we have shown how to obtain the Aichelburg-Sexl metric in the

bulk, and how to superpose two such shock wave to produce a classical trapped surface.

We have also paid special attention to suppressing stringy effects in the bulk, by

producing a smoothed-out version of the shock-wave geometry. Finally, we have given

evidence that scattering of gravitons a finite impact parameter is described by a reduced

model of matrix quantum mechanics.
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There are many interesting question one can try to answer along these lines. First, one

would like to learn how to construct the bulk wavefunction dual to the exponential BPS

states (3.8). For single trace states, the dictionary is discussed in the appendix. However,

for these states, we showed that the wavefunction is not well localized in the directions

orthogonal to the propagation of the particle. We argued that this is not a problem for the

exponential states based on the validity of the saddle point approximation in the Random

Matrix model. Nevertheless, it is very desirable to have an actual wavefunction in the bulk

to make an explicit calculation.

Another interesting avenue of research is the study of gravitons scattering using the

reduced matrix model studied in the previous section. In particular one would like to

understand how to time evolve density fluctuations δρ in the eigenvalue distribution. Ac-

cording to the arguments given above, we expect that such scattering processes will capture

the physics of graviton scattering at large impact parameter in flat space. It would be very

interesting to confirm this.

The reduced matrix model could also help to answer the question about the wavefunc-

tion localization. For example, one can study the a holomorphic wavepacket of the form

exp(
∑

i

∑
k tkz

k
i ) and use the full SO(6) eigenvalue measure to study its spread along all

the directions on the S5. This will require the use of numerical techniques such as in [14].

It would be very interesting to understand how to calculate the finite time propagator

〈ψ1(t)|ψ2(0)〉 in the matrix model. In fact, we expect that for short times t ∼ 1/R, and for

density fluctuations localized within an angular distance ∆φ ∼ 1/R, this computation will

give us the flat space S-matrix. One can then start to look for signatures of the black hole

formation. In particular, one expects that these amplitudes should behave like

〈ψ1(t)|ψ2(0)〉 ∼ e−SBH ∼ e−E
8/7

, (5.1)

for large energies E [22]. Finally, note that the small black hole has a finite entropy SBH ∼
E8/7 in the large N limit. Therefore, the matrix model (even without the off-diagonal

excitations) has more than enough degrees of freedom to account for its microstates (I

thank Rob Myers for pointing this out).
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A The ten dimensional wavefunction

In this appendix we study the relation between the single trace wavefunction (3.20) in SYM,

and the ten dimensional wavefunction in the bulk. The main conclusion is that the single

trace states lead to wavepackets that are not well localized in the direction orthogonal to

the propagation of the graviton.
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To find the ten dimensional wavefunction, we need to linearize the LLM solutions,

and quantize the fluctuation around AdS5 × S5. Fortunately, this was done in [23]. Their

parametrization of the edge fluctuation δr(φ) takes the form,

δr(φ) =
∑

n 6=0

ane
inφ , (A.1)

where a−n = a∗n.
After quantization, one finds that the Fourier coefficients an obey the commutation

relations (after proper normalization),

[an, a
†
m] = nδn,m . (A.2)

This is very similar to the expectation value,

〈0|~n/2 TrAn~
m/2 Tr(A†)m|0〉 = nδn,m . (A.3)

Therefore we can identify,

a†n|0〉 ∼ Tr(A†)n|0〉 . (A.4)

The metric fluctuation in global coordinates looks like [23],

δg ∼
∑

n 6=0

cnYnsn , (A.5)

where cn are constants, and

Yn = ein(φ−t) cos|n| θ , sn ∝ 1

cosh|n| ρ
ane

int . (A.6)

The important point here is that these modes satisfy the ten dimensional Laplace equation:

∇2
10(snYn) = 0 . (A.7)

Therefore, they provide a position representation of the wavefunction corresponding to the

mode a†n|0〉. In other words,

〈~x10|a†n|0〉 ∼ snYn . (A.8)

Using the identification (A.4), we see that the modes sn, Yn also give ten dimensional

interpretation of the single trace states in the gauge theory.

Let us now define the normalized modes,

φn(~x) ∝ snYn , (A.9)

so that ∫

Σ
φ∗nφm = δn,m . (A.10)

Here, Σ is a constant time surface. More explicitly,

φn ∝
√

(n+ 1)(n + 2)(2n − 1)(2n − 3) cosn θ

coshn ρ
einφ̃ . (A.11)
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There is a subtlety with the n = 1 mode which is not normalizable. In the LLM

picture, this mode corresponds to a translation of the droplet in in the complex plane.

We can set this mode to zero by translating the droplet. For example, shifting the whole

droplet by a complex number a, the moments change by

tk → tk + a∗δk,1 − a(k + 1)tk+1 + O(a2) . (A.12)

Since the moments that we are considering are very small, we can just set a∗ = −t1 and

get rid of this mode. The other modes will not be changed to leading order.

A general normalized wavefunction is,

ψ(~x) =
∑

n>1

ψnφn(~x) , (A.13)

with ∑

n>1

|ψn|2 = 1 . (A.14)

Given the relation between the bulk and gauge theory states (A.4), it is natural to iden-

tify ψn above with the corresponding coefficients used in the single trace gauge theory

state (3.20). Let us now use the example studied in the previous section.

To study the spread of the wavefunction, is is convenient to make some coordinate

transformations. Using the coordinate change (2.7), the rescalings (2.9) and the relation

cos θ = r one can easily show,
cos θ

cosh ρ
≈ 1 − ~r2

2R2
, (A.15)

where ~r is the eight-dimensional vector transverse to the propagation of the graviton.

Therefore, the probability density in a spatial slice Σ is,

|ψ(~x)|2 ∼ |~r|7
∣∣∣∣∣
∑

k>1

ψk
√

(n + 1)(n+ 2)(2n − 1)(2n − 3) ×
(

1 − ~r2

2R2

)n
einφ̃

∣∣∣∣∣

2

. (A.16)

Here, we have included the measure for the eight transverse directions.

We can now look at the example studied in section III. Namely, the wavefunction

given by eq. (3.28). After integrating out the φ̃ coordinate, one finds that the full wave-

function (A.16) is peaked around |~r| ∼
√
R, with a spread of similar size. This is way too

big! Therefore, we conclude that this kind of wavefunction cannot localize the graviton

within the flat space region.
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